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Gauging Dual Symmetry
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For some symmetries the process of transforming from a global to a local symmetry
can be achieved by introducing a scalar field rather than a vector field. The symmetry
that we study is electric–magnetic dual symmetry which “rotates” electric and magnetic
quantities into one another. Starting from an initial Lagrangian which contains vector
fields and satisfies a global electric–magnetic duality, we show that it is possible to make
the symmetry local by introducing a scalar field.
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1. INTRODUCTION

Local or gauge symmetry is deeply ingrained in modern physics. The strong
and electroweak interactions of particle physics are formulated as gauge interac-
tions. General relativity can be viewed as taking the global spacetime symmetries
of special relativity and making them local. In the case of the strong and elec-
troweak interactions the vector fields can be said to be derived from the gauge
principle, in contrast to the matter fields which are “put in by hand.” Here we
show that it is possible to gauge certain symmetries using scalar rather than vector
fields. Starting with a Lagrangian with a global electric–magnetic dual symmetry
and vector fields, we find that making this dual symmetry local requires the intro-
duction of a complex scalar field. The final Lagrangian contains both the original
vector fields as well as the scalar field which arises from the alternative gauge
principle. This Lagrangian is different from the standard scalar electrodynamics
Lagrangian in that the coupling between the vector and scalar field is a derivative
coupling as opposed to a polynomial coupling.

For definiteness and to make comparisons, we briefly review the textbook ex-
ample (Ryder, 1996) of scalar electrodynamics where the ordinary gauge principle
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is applied to a complex scalar field. Starting with the Lagrange density

Lscalar= (∂µφ)∗(∂µφ)−m2φ∗φ − λ(φ∗φ)2 (1)

one finds that it is possible to allow the scalar fields to have the following local
symmetry

φ(x)→ e−ie3(x)φ(x) φ∗(x)→ eie3(x)φ∗(x) (2)

if one introduces a four-vector, gauge fieldAµ, which promotes the ordinary deriva-
tive to a covariant derivative∂µ→ ∂µ − ieAµ ≡ Dµ. In conjunction with the
transformation in Eq. (2),Aµ transforms as

Aµ→ Aµ − ∂µ3(x) (3)

One also introduces a term which contains only the gauge fields and is invariant
under Eq. (3) namely− 1

4 FµνFµν whereFµν = ∂µAν − ∂νAµ. The new Lagrange
density which is invariant under Eqs. (2) and (3) is

L′scalar= (Dµφ)∗(Dµφ)−m2φ∗φ − λ(φ∗φ)2− 1

4
FµνFµν (4)

Starting with a Lagrange density with scalar fields, it is necessary to introduce
a vector field in order to allow the global phase symmetry of the scalar fields to
become local.

2. DUAL SYMMETRY

Sourcefree electromagnetism possesses a dual symmetry between electric and
magnetic fields which can be written in terms ofFµν and its dualF̃µν = 1

2εµναβFαβ

(Felsager, 1998)

Fµν → cos(3)Fµν + sin(3)F̃µν
(5)

F̃µν → −sin(3)Fµν + cos(3)F̃µν

The standard form of this dual symmetry in terms of theE andB fields is obtained
by making the replacementsFµν → E and F̃µν → B (Jackson, 1998). This dual
symmetry of Maxwell’s equations can be extended to the case with sources if
one allows both electric and magnetic charges. We would like to extend the dual
symmetry of Eq. (5) down to the level of the four-vector potential,Aµ = (8, A).
However, since the expression for the electric and magnetic fields in terms of the
potentials is not symmetric (E = −∇8− ∂tA andB = ∇ × A) this is difficult. In
the context of electromagnetism with magnetic charge, one can introduce a second
four-vector potential,Cµ = (8m, C) (Cabibbo and Ferrari, 1962; Zwanziger, 1971)
in terms of which the electric and magnetic fields take on the more symmetric form,
E = −∇8− ∂tA −∇ × C and B = −∇8m − ∂tC+∇ × A. Singleton (1995,
1996) presents an elementary overview of this two-potential approach, as well
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as references to the extensive work that has been done on this approach to elec-
tromagnetism with magnetic charge. In this two-potential approach the dual sym-
metry can be extended to the level of the potentials by changingFµν → Aµ and
F̃µν → Cµ in Eq. (5) (see Eq. (5.17b) in Zwanziger, 1971). This global, dual
symmetry for the potentials can be put in a form similar to the phase transforma-
tion of the scalar fields of Eq. (2) of the previous section by defining a complex
four-potential,Wµ = Aµ + iCµ, in terms of which Eq. (5) for the potentials can
be written as

Wµ→ e−i3Wµ (6)

In this form the electric-magnetic dual symmetry is similar to the phase sym-
metry of the scalar fields in Eq. (2).Wµ gives a complex field strength tensor,
Gµν = ∂µWν − ∂νWµ, which will be useful in the next section. Although, we
have associated the transformation in Eq. (6) with the electric-magnetic duality of
Maxwell’s equations, one could argue that Eq. (6) is just a phase transformation
for a complex, matter, vector fieldWµ. However, in the next section we will give
a procedure for making this symmetry local which is distinct from the standard
gauge procedure. Applying the standard gauge procedure toWµ would simply lead
to another vector field (this is done, for example, on p. 124 in Felsager, 1998). In
contrast our dual gauge procedure will lead to the introduction of a scalar field.
Thus, regardless of the interpretation of the symmetry in Eq. (6) the gauging proce-
dure presented in the next section is different from the standard method of gauging
a symmetry.

3. MAKING DUAL SYMMETRY LOCAL

We now want to allow the dual symmetry of Eq. (6) to become local,3→
g3(x). We have introduced the constantg, which will be seen to be the coupling
constant between the vector field,Wµ, and the scalar field. In our development we
build up our Lagrange density one piece at a time using an infinitesimal version
(i.e. taking3(x) infinitesimal) of Eq. (6) namely

δWµ = −ig3Wµ δW∗µ = ig3W∗µ (7)

We will also need the infinitesimal variations of the partial derivatives of the
complex vector potential

δ(∂µWν) = −ig∂µ(3Wν) δ(∂µW∗ν ) = ig∂µ(3W∗ν ) (8)

and the variations of the complex field strengths

δGµν = −ig3Gµν − ig(∂µ3Wν − ∂ν3Wµ)

δG∗µν = ig3G∗µν + ig(∂µ3W∗ν − ∂ν3W∗µ) (9)
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Now we start with a “kinetic” energy Lagrangian for the vector fields

L1 = −1

4
GµνG

µν∗ (10)

in the same way that in the Introduction we began with a kinetic energy term
for the complex scalar field. This Lagrangian in Eq. (10) is invariant under a
generalized version of the gauge transformation in Eq. (3) (i.e. a transformation
for bothAµ andCµ). The final Lagrange density that we find will no longer respect
this standard gauge symmetry, but it will be invariant under the local version of
the dual symmetry in Eq. (6). Thus we gain one local symmetry, Eq. (6), at the
cost of losing another, Eq. (3).

For the scalar field case we also included a mass and quartic self-interaction
term since these were allowed by the phase symmetry of Eq. (2). In the same way we
could include a mass termm2WµWµ∗ and a self-interaction termλ(WµWµ∗)2 to
our Lagrangian. Such terms are usually forbidden by the standard gauge trans-
formation in Eq. (3), but are allowed by Eq. (6). We could also add a term
like εµναβGµνGαβ∗ = GµνG̃∗µν to L1. However, by the antisymmetry properties
of εµναβ , such a term would not change the field equations derived from the
Lagrangian. In the end when we arrive at the dual version of the covariant deriva-
tive, it will be straightforward to show that both terms likeGµνGµν∗ andGµνG̃∗µν
can be made consistent with the local dual symmetry of Eq. (5). Taking the variation
of L1 using Eq. (9)

δL1 = −1

4
(δGµνG

µν∗ + GµνδG
µν∗)

= ig

2
∂µ3(WνG∗µν −Wν∗Gµν) (11)

SinceδL1 6= 0 we continue to add terms to the Lagrangian in the hopes of building
a total Lagrangian for whichδLtotal = 0. We next consider

L2 = g

2
(∂µφWνG

µν∗ + ∂µφ∗W∗ν Gµν) (12)

where we have introduced a complex scalar fieldφ, which we require to transform
as

φ→ φ − i3(x) φ∗ → φ∗ + i3(x) (13)

The arbitrary function3(x) is the same as in Eq. (6). Just as the dual transformation
of Eq. (6) was similar to the phase transformation of Eq. (2), so the transformation of
Eq. (13) is similar to the gauge transformation of Eq. (3). We will callφ the “gauge”
field for the dual symmetry or the dual gauge field. Since the transformation of the
scalar field only involves an imaginary shift of the field viai3(x), one could use
this freedom to transform away the imaginary part of the scalar field by choosing
3(x) to equal the imaginary part ofφ. This freedom will manifest itself later in
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that the scalar field kinetic energy term, allowed by Eq. (13), will only contain the
real part of the scalar field.

The infinitesimal forms of the transformation forφ and its partial derivatives
are given by

δφ = −i3 δ(∂µφ) = −i ∂µ3

δφ∗ = i3 δ(∂µφ
∗) = i ∂µ3 (14)

Using these and the transformations of Eqs. (7)–(9), we find

δL2 = − ig

2
∂µ3(WνG

µν∗ −W∗ν Gµν)+ ig2

2
∂µ3(∂µφ − ∂µφ∗)W∗ν Wν

+ ig2

2
∂ν3(∂µφ

∗Wν∗Wµ − ∂µφWνWµ∗) (15)

The first term inδL2 now cancels the unwanted term fromδL1, but only at the
cost of two new terms. Next we add

L3 = −g2

2
∂µφ∂

µφ∗WνW
ν∗ (16)

which has the following variation from Eqs. (7) and (14)

δL3 = − ig2

2
∂µ3(∂µφ − ∂µφ∗)W∗ν Wν (17)

which cancels the second term fromδL2 in Eq. (15). In arriving at Eq. (17) we
used the result thatW∗ν Wµ is invariant under the local dual transformation so that
δ(W∗ν Wµ) = 0. Finally, adding

L4 = g2

4
(∂νφ∂µφ

∗W∗ν Wµ + ∂νφ∗∂µφWνW
µ∗) (18)

gives a variation of

δL4 = ig2

2
∂ν3(∂µφWνWµ∗ − ∂µφ∗Wν∗Wµ) (19)

where we have renamed indices to get this form. Again, we have usedδ(W∗ν Wµ) =
0 andδ(WνWµ∗) = 0. This variation ofL4 cancels the third term fromδL2 in
Eq. (15), and by adding all four terms together (L = L1+ L2+ L3+ L4) we
arrive at a Lagrange density which is invariant under the local dual transformation
(i.e. δL = 0). In the standard application of the gauge principle sketched in the
Introduction, one finishes by adding a term to the Lagrange density which contains
only the vector fields (i.e. the last term in Eq. (4)). The same thing is possible for
the local dual symmetry with the Lagrange density of the form

L5 = 1

2
(∂µφ + ∂µφ∗)(∂µφ + ∂µφ∗) (20)
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It is easy to see that under the infinitesimal transformation, Eq. (14),δL5 = 0. The
Lagrange density of Eq. (20) looks similar to the standard kinetic energy terms
of a scalar field namely12∂µφ∂

µφ. Collecting these five terms together the total
Lagrange density can be written in the simplified form

Ltotal = −1

4
(Gµν − g∂µφWν + g∂νφWµ)(Gµν∗ − g∂µφ∗Wν∗ + g∂νφ∗Wµ∗)

+ 1

2
(∂µφ + ∂µφ∗)(∂µφ + ∂µφ∗) (21)

This is invariant (δLtotal = 0) under the dual “gauge” transformations of Eqs.
(7), (8), and (14). The scalar–vector theory associated with the Lagrange density
of Eq. (21) is distinct from scalar electrodynamics. The scalar-vector couplings
given in Eqs. (12), (16), and (18) are all derivative couplings, whereas scalar
electrodynamics also has polynomial couplings between the scalar field and vector
field. The couplingg in the Lagrangian of Eq. (21) also has a mass dimension−1,
whereas scalar electrodynamics has a dimensionless coupling. If the Lagrange
density in Eq. (21) is to have a mass dimension 4, and ifφ, Wµ, and∂µ have the
conventional mass dimension of 1, theng must have mass dimension−1. This
last comment raises the question as to the renormalizability of the scalar–vector
theory of Eq. (21). The fact thatg has a negative mass dimension indicates that the
theory associated with Eq. (21) is nonrenormalizable. However, theories which are
nonrenormalizable can still be useful when treated as effective theories (Weinberg,
1995). In any case for this paper we have focused on the task of constructing
a classical Lagrangian which respects the dual symmetry locally. We leave the
technical and complex question of the renormalization of the theory in Eq. (21)
for a possible future investigation.

The derivative coupling which arises between the vector and scalar fields
from the dual gauge principle (Eqs. (12), (16), and (18)) can be compared to the
derivative couplings which occur in an effective Lagrangian for pions (Donoghue,
1992)

Leff = 1

2
∂µ Eπ∂µ Eπ + 1

6F2
[( Eπ · ∂µ Eπ )2− Eπ2(∂µ Eπ · ∂µ Eπ )] + · · · (22)

whereF is a coupling constant with mass dimension 1, andEπ is the pion triplet.
Here the derivative couplings are between scalar fields, while in Eq. (21) the
couplings are between scalar and vector fields. Also just as with the Lagrangian
in Eq. (21) the effective Lagrangian in Eq. (22) is nonrenormalizable.

Although simple mass terms, likem2φφ∗, are forbidden by the dual gauge
transformation (13), one can use the invariance ofφ + φ∗ to add a term like
m2(φ + φ∗)2, which is a mass term for the real part of the scalar field. Writing out
the complex scalar dual gauge field in terms of real components (φ = ϕ1+ iϕ2)
one notices the combination, (φ + φ∗), contains only one real degree of freedom,
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ϕ1. This comment also applies to∂µφ + ∂µφ∗, which appears in the “kinetic”
energy term for the scalar field, Eq. (20). Therefore, even though it appears that
there are two scalar degrees of freedom associated with the complex scalar field
φ, only one degree of freedomϕ1, has a proper kinetic energy or mass term. This
result that only one degree of freedom (i.e. the real component) from the complex
scalar field appears to be dynamical is related to the form of transformation of
the scalar field given in Eq. (13). Making use of this “gauge” freedom, one can
choose3(x) = ϕ2(x) thus transforming away the complex degree of freedom ofφ.
There are other terms which could be added toLtotal that preserve the dual gauge
invariance: (φ + φ∗)n, (WµWµ∗)m, or (φ + φ∗)n(WµWµ∗)m, wheren andm are
arbitrary integers.

We have laboriously arrived at this Lagrange density, using the infinitesimal
form of the dual gauge transformation. In the next section we will show how the
first term inLtotal can be interpreted as a dual covariant derivative, leading much
more quickly and elegantly to the invariance of the Lagrange density under the
local dual transformations.

4. COMPARISON WITH ORDINARY GAUGE SYMMETRY

In the previous section we have shown that there is a close connection between
the standard gauge principle and the dual gauge principle that arises by making
the electric–magnetic dual symmetry local. The difference is that the scalar and
vector fields have switched roles, and are thus in some sense duals of one another.

In an ordinary gauge theory one has the phase transformationφ→ e−ie3(x)φ,
and the gauge transformationAµ→ Aµ − ∂µ3. For the dual gauge theory one
has the local, dual symmetryWµ→ e−ig3(x)Wµ and the dual gauge transformation
φ→ φ − i3(x).

In an ordinary gauge theory one starts with scalar or spinor fields and in-
troduces vector fields to have the phase symmetry of the scalar or spinor fields
become local. For the dual gauge symmetry one starts with vector fields and in-
troduces scalar fields so that the dual symmetry of the vector fields can become
local.

In an ordinary gauge theory one introduces a kinetic term for the vector fields,
− 1

4 FµνFµν , which is invariant by itself under the gauge transformation ofAµ. In
the dual gauge theory one introduces a kinetic term for the dual gauge fields,
(∂µφ + ∂µφ∗)(∂µφ + ∂µφ∗), which is invariant by itself under the dual gauge
transformation ofφ.

In an ordinary gauge theory one starts with a kinetic energy Lagrangian for
the matter fields∂µφ∂µφ∗, and the interaction terms between the matter and gauge
fields arise as a result of the replacement of the ordinary derivative by the covariant
derivative,∂µφ→ ∂µφ − ieAµφ. In the dual gauge theory one can introduce a
similar concept. Changing the derivatives of the vector fields in the following
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way:

∂µWν → ∂µWν − g∂µφWν

∂µW∗ν → ∂µW∗ν − g∂µφ
∗W∗ν (23)

one has

Gµν → Gµν − g∂µφWν + g∂νφWµ

G∗µν → G∗µν − g∂µφ
∗W∗ν + g∂νφ

∗W∗µ (24)

which can be seen to give the first term in the Lagrangian of Eq. (21) starting
from− 1

4GµνGµν∗. In addition one can show that the dual “covariant” derivative
in Eq. (23) transforms as

∂µWν − g∂µφWν → e−ig3(x)(∂µWν − g∂µφWν) (25)

∂µW∗ν − g∂µφ
∗W∗ν → eig3(x)(∂µW∗ν − g∂µφ

∗W∗ν ) (26)

The dual covariant derivative also provides an easier and more elegant way of seeing
that terms likeGµνGµν∗ (and also terms likeGµνG̃µν∗) can be made consistent
with the local dual symmetry.

Finally in ordinary gauge theories mass terms for the vector gauge bosons,
m2AµAµ, are forbidden by the gauge transformation. Under the dual gauge trans-
formation mass terms and self-interaction terms are allowed for the vector fields.
One can have terms likeWµWµ∗ or (WµWµ∗)2 which are invariant under the dual
gauge transformation. Similar quartic terms for the vector fields can arise in ordi-
nary gauge theories if the gauge symmetry is non-Abelian. In our example of the
preceding section we started with an Abelian theory in Eq. (10), which satisfied an
ordinary gauge symmetry—Eq. (3). Our final Lagrangian—Eq. (21)—no longer
satisfied this original gauge symmetry, but instead satisfied a local, dual symmetry.
Thus one local symmetry has been lost or exchanged in favor of another.

5. CONCLUSIONS

By gauging the electric-magnetic dual symmetry of Maxwell’s field equations
the roles of the vector fields and the scalar fields are to some extent exchanged. In the
dual gauge theory the scalar fields arise from the dual gauge principle, in the same
way that in ordinary gauge theories the vector fields arise from the ordinary gauge
principle. There are other interesting formulations of the ordinary gauge principle
(Chaves and Morales, 1998, 2000) where scalar gauge fields arise inconjunction
with the usual vector gauge fields. For the dual gauge theory, however, the roles of
the scalar and vector fields are exchanged. There have been other recent attempts
(Pakman, 2000) to make the dual symmetry of the Schwarz–Sen electromagnetic
action (Schwarz and Sen, 1994) local. In Pakman (2000) this is done without the
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introduction of a scalar field. There are two obvious extensions of the dual gauge
idea:

1. Non-Abelian theories have been shown to have dualities similar to the
electric–magnetic duality of the Abelian Maxwell equations (Chanet al.,
1995, 1996). Thus, one could consider gauging the dual symmetry for
a non-Abelian gauge theory. However, there are significant differences
between the Abelian electric-magnetic duality discussed here, and the
non-Abelian version given in Chanet al. (1995, 1996).

2. In our present example of the dual gauge idea we have been able to “derive”
scalar fields from the gauging of the dual symmetry. One could ask if it
is possible to “derive” fermionic fields from the dual gauge idea. In our
example the scalar fields were first introduced in Eq. (12) viaL2. The
dual gauge transformations of these scalar fields were then chosen as that
the first term inδL2, which arose from the variation of the scalar fields,
would cancelδL1. To accomplish the same thing with fermionic field we
would need to replace∂µφ, ∂µφ∗ in Eq. (12) with fermionic terms which
also have one Lorentz index (e.g.∂µφ, ∂µφ∗ → ∂µ[ψ̄ψ ] or ψγµψ). The
fermionic fields would then need to satisfy some transformation akin to
Eq. (13) so that the variation of the fermionic fields would cancelδL1.

The dual gauge principle given in this paper replaces the vector, gauge field
with the derivative of a scalar field in the definition of the covariant derivative (i.e.
∂µ − ieAµ→ ∂µ − g∂µφ or ieAµ→ g∂µφ). There are other cases when a vector,
gauge field can be identified with the derivative of scalar fields. For pure SU(2)
gauge theory it is possible to make the following ansatz (Corrigan and Fairlie,
1977; Wilczek, 1977)

Aa
µ = (ε0aµν ∓ igaµgν0± igaνgµ0)

∂νφ

φ
= ηaµν

∂νφ

φ
(27)

whereεαβµν is the 4D Levi–Civita symbol, andgµν is the metric tensor. This ansatz
turns the SU(2) Yang–Mills theory into a masslessφ4 theory. The relationship
between the vector gauge field and scalar field given in Eq. (27) is more complicated
than the relationship implied by the comparison of the ordinary and dual gauge
covariant derivative (i.e.ieAµ→ g∂µφ). Nevertheless both relationships involve
the association/replacement of a vector field by the partial derivative of a scalar
field.
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